
Distributed Middleware
Services Composition and
Synthesis Technology

Miklós Maróti, Péter Völgyesi, Gyula Simon,
Gábor Karsai and Ákos Lédeczi

Institute for Software Integrated Systems,
Vanderbilt University

March 10, 2003 2

Outline

 Introduction
 Asynchronous I/O automata
 Structured sets and data ports
 Structural model of I/O automata
 Case study

 TinyOS: cooperative acoustic tracking
 Siesta: routing in vibration control simulation

 Conclusion

March 10, 2003 3

Networked Embedded Systems
Technology (NEST)
 Large volume fabrication of compact autonomous nodes
 Have limited resources and communication capabilities
 Large number of densely deployed processing nodes
 Tightly coupled to physical processes

March 10, 2003 4

NEST applications

 Equipment and process control
 Avionics

 Environment monitoring
 Pollution
 Chem/bio agent detection

 Target detection and classification
 Acoustic and seismic beamformation
 Target localization

 Smart structures
 Acoustic sensing
 Vibration control

March 10, 2003 5

NEST middleware

 Kind of distributed operating system that
provides global services to the application

 The middleware must be
 application specific
 programming language and platform specific
 highly configurable

 Currently, the middleware is written and
verified for each application and platform

March 10, 2003 6

Our approach

 Automatically synthesize
the middleware from
abstract models

 Capture the temporal and
computational aspects of
distributed algorithms in a
programming language and
platform independent way

 Focus on composition and
verification of middleware
components

March 10, 2003 7

Asynchronous I/O automata

 Mathematical specifications of distributed
algorithms

 Extensively used in the literature for the
formal representation, verification and
analysis of reactive systems [Lynch].

 Theoretical methods and results describing
the interaction and refinement of
asynchronous I/O automata.

March 10, 2003 8

The I/O automaton A

 states(A), a nonempty set of states
 start(A), a nonempty subset of states(A)
 acts(A), a set of actions, partitioned into three

sets: in(A), out(A) and int(A), the set of input,
output and internal actions

 trans(A), a state-transition relation, where
trans(A) ⊆ states(A)×acts(A)×states(A)

 tasks(A), a partition of out(A) ∪ int(A)

March 10, 2003 9

Execution of I/O automata

 The execution of A is a sequence s1, a1, s2, a2,
s3,… of states and actions such that s1 is a
start state, and (si, ai, si+1) are transitions of A

 I/O automata are input enabled: input actions
can occur in every state

 The execution order of locally controlled
actions is nondeterministic

March 10, 2003 10

I/O automata specifications in
practice
 States are described in terms of a list of state

variables and their initial values, that is, states(A) =
D1×…×Dn

 Actions are grouped into logically coherent action
groups, that is, acts(A) = G1 ∪… G∪ m

 Each action group is parameterized, described in
terms of action parameters:
Gi = Ei,1 ×…× Ei,p(i)

 Transitions are described in a mathematical pseudo-
code accessing state variables and action
parameters (preconditions and effects)

March 10, 2003 11

Focusing on structure

 The sets of states, actions and transitions are
naturally structured in practice

 The pseudo-code describing the transition
relation can be very complex and
nondeterministic

 We minimize the complexity of the pseudo
code by introducing more complicated
compositional operators of I/O automata

March 10, 2003 12

Structured sets and data
ports
 The following are structured sets

 The domains of basic datatypes
 Finite products of structured sets
 Disjunct unions of structured sets
 Finite powers of structured sets
 The Kleene star of structured sets

 We can formally define data ports of
structured sets that provide read and write
access to limited parts of the structured set.

March 10, 2003 13

Structural model of I/O
automata
 states(A) is a structured set
 acts(A) is a structured set
 in(A) and out(A) are data ports of acts(A)
 value(A), a data port of states(A)
 trans(A), only simple transitions are allowed:

 Preconditions: only simple comparisons
 Effects: only simple assignments

March 10, 2003 14

Compositional operators of
structural I/O automata
 Variable: most basic building block
 Activator: introduces new simple state-

transitions
 Product: composition of automata
 Union: alternative implementations
 Power: implements arrays
 Black Box: wrappers around existing

services

March 10, 2003 15

Case study: cooperative acoustic
tracking
 Running on the Berkeley mote platform and the

TinyOS operating system
 Two kinds of motes

 Active tags: sends radio and sound signal
 Trackers: receive radio and sound signal, compute time of

flight of the sound, estimate distance

 Track table middleware service: maintain a table of
all measurements at each tracker

 Based on the content of the track table, a local
algorithm computes the location of the tags

March 10, 2003 16

TinyOS overview

 The MICA and RENE
hardware platforms (University
of California, Berkeley)

 Event based operating
environment for embedded
networked sensors

 Two-level (non-preemptive)
scheduling: events and tasks

 Components: event and
command handlers, fixed
memory frames

 The operating system /
application is a collection of
statically linked interacting
components.

March 10, 2003 17

Generic Modeling Environment
(GME)
 Configurable toolkit for creating domain-

specific modeling and program synthesis
environment

 Configuration is through a (UML based)
metamodel specifying the syntactic, semantic
and presentation information of the domain.

 A graphical model builder is used to build
application models

 Domain specific synthesizers

March 10, 2003 18

Distributed Services Composition
and Synthesis Technology
(DISSECT)

March 10, 2003 19

Case study: vibration control

 Acoustic damping of vibration in a fairing
 SIESTA: simulator implemented in Java that

uses a simplified I/O automata-based
middleware

 We used the same modeling environment
(DISSECT) as before, but with a different
conde synthesizer

 We modeled the broadcast and routing
components

March 10, 2003 20

Conclusion

 It is possible to model distributed middleware
services in a platform nutral and
programming language independent way

 It is possible to automatically synthesize the
distributed middleware from generic models
using platform dependent code synthesizers

 Middleware service composition needs better
support: a lot of research is still to be done

	Distributed Middleware Services Composition and Synthesis Technology
	Outline
	Networked Embedded Systems Technology (NEST)
	NEST applications
	NEST middleware
	Our approach
	Asynchronous I/O automata
	The I/O automaton A
	Execution of I/O automata
	I/O automata specifications in practice
	Focusing on structure
	Structured sets and data ports
	Structural model of I/O automata
	Compositional operators of structural I/O automata
	Case study: cooperative acoustic tracking
	TinyOS overview
	Generic Modeling Environment (GME)
	Distributed Services Composition and Synthesis Technology (DISSECT)
	Case study: vibration control
	Conclusion

